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Abstract
The present work focused on the dynamic and optimization of a continuous biochemical reactor using the glucose 

as a substrate. Simulated model provides the development of the process and reducing the risk of experimental 
runs. The selected process variables are; dilution rate (D), feed substrate concentration (Si), pH and temperature 
(T).The effect of D was observed at Si below 20 g/L. pH and T are affecting within Si of 60 g/L. Si is the effective 
process variable on the dynamic characteristics of the reactor. Reasonable agreement has found when compared 
the simulated results with that obtained by the previous work .Optimization technique guides the decision maker to 
select the best operating conditions. Stochastic genetic algorithm has found suitable for the nonlinear reactor. Optimal 
results indicate that the maximum biomass concentration (X) is 80.57 g/L at Si of 197.56 g/L and low D of 0.1(1/hr). Si 
was the sensitive variable for changing of the objective X.

Keywords: Biochemical reactor; Dynamic model; Optimization;
Simulation

Nomenclatures: D: Dilution rate, [1/hr]; F: Flow rate, [L/hr]; Km:
Saturation constant, [g/L]; PH: Acidity [-]; r1: Rate of cell generation 
[g/L.hr]; r2: Rate of substrate consumption [g/L.hr]; S: Substrate 
concentration in the reactor [g/L]; Si: Feed substrate concentration 
[g/L]; T: Temperature [C°]; t: Time [hr]; V: Volume of the reactor 
[L]; X: Biomass concentration in the reactor [g/L]; Y: Yield [-]; Greek 
Symbols µmax: Maximum specific growth rate coefficient [1/hr]; µ(s): 
Local specific growth rate coefficient, [1/hr]

Introduction
Lee [1], and Kapadia et al. [2] described the concept and applications 

of the biochemical reactors. The stirred-tank bioreactor is one of the 
most commonly used types for large scale production in industrial 
applications such as food, pharmaceuticals, various commodity and 
specialty chemicals. It is used mainly in two modes: the continuous 
mode and the fed-batch mode. In the continuous mode, the limiting 
substrates are constantly added to the reactor, while the output stream 
is simultaneously removed at the same rate, to keep the reactor volume 
constant. The continuous stirred biochemical reactor is widely used in 
the treatment of liquid wastes. Its process kinetic can be characterized 
by the following reaction scheme:

Substrate → Biomass +Gas

Henson [3] explained that as compared to conventional chemical 
reactors, bioreactors present unique modeling and control challenges 
due to complexity of the underlying biochemical reactions.

Karadag and Puhakka [4] and Garhyan et al. [5] studied the 
bioreactor performance using mixed cultures influenced by several 
operational parameters which affect its static and dynamic behavior 
such as: dilution rate, feed substrate concentration pH, hydraulic 
retention time, organic loading rate and temperature. In particular, 
the role of pH seems the most important parameter in the regulation 
of enzymes pool production. Ruggeri et al. [6] indicated that the pH 
adjustments validated the dynamics of the system. Charoenchai et al. 
[7] concluded that the temperature is a variable that directly affects the
growth rate of organisms.

Annamalai and Doble [8] had found the mathematical modeling of 
fermentation process helps to; elucidate the mechanism of production 
process, estimate kinetic parameters such as specific growth rate 

of biomass and product formation rate develop the understanding 
between effects of operational conditions on production, and reduce 
laboratory experiments thereby saving time and resources.

Alhumaizi and Ajbar [9], and Shimizu [10] proved the biological 
processes are inherently very nonlinear and had frequently been 
changing optimum operating conditions. Many available mathematical 
models for biological reactions were not suitable for a control design 
since no accurate biological law had been proposed. 

Kapadia et al. [2] proposed a novel robust controller for a 
continuous stirred biochemical reactor that controls the culture 
dilution rate into the reactor in order to maximize a cost function 
representing the biomass yield. 

Genetic Algorithm (GA) is global stochastic search based on 
mechanics of natural selection and natural genetics.GA is based on 
Darwin’s theory of ‘survival of the fittest’. There are several genetic 
operators such as; selection, crossover and mutation, etc. Gupta 
and Srivastava [11] concluded that the deterministic algorithms for 
function optimization are generally limited to convex regular functions. 
However, many functions are either not differentiable or needed a 
lot of difficult mathematical treatment: decomposition, sensitivity 
computing, etc. 

Scope of the Work
The present work focuses on the simulation of the continuous 

biochemical reactor using glucose as the substrate. Study the effect 
of the process variables on the dynamic behavior of the reactor. The 
selected variables are; feed substrate concentration, dilution rate, pH 
and temperature. The reliable simulated model can be used to generate 
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Equations (1&2) can be simplified to:

dX/dt = (µ(s) – D)X                                     (7)

dS/dt = D (Si – S) – (X/Y)µ(s)                 (8)

where D=F/V

Equation 6 was correlated depended on the experimental data of 
Lopez et al. [12].

The simulated model will implement for the wastewater contains 
glucose with different concentrations from 6.0 to 200.0 gm/L. 
Temperature of water are varied from 20 to 30 °C and the acidity are 
from pH 2 to pH 4. The kinetic parameters of the biological reaction are; 
maximum specific growth rate coefficient (µmax=0.3 hr-1), saturation 
constant (Km=1.0 g/L) and yield (Y=0.4) regarding to Lopez et al. [12], 
Cutlip and Shacham [13].

Results and Discussion
Optimal operating conditions

The initial optimal operating conditions of the system (Table 1) 
were estimated by the nonlinear Levenberg-Marquardt method with 
the aid of the MATLAB computer program.

Unsteady state conditions

The present bioreactor can be viewed as nonlinear dynamic 
system and the simulation is very useful tool for model validation 
.The unsteady- state model equation 7 and equation 8 were solved 
numerically using 5th order Runge-kutta method with the aid of the 
MATLAB program, starting from steady- state operating conditions 
(Table 1). Figures 1-7 explain the behaviors of the biochemical process 
under different values of variables; dilution rate (D), feed substrate 
concentration (Si) at operating conditions of pH 2-4 and temperature 
of 20-30°C. 

Dynamically, the system behaves as the first- order lag system. The 

the desirable data for formulating the optimization equation. The 
objective is to maximize the biomass concentration in the reactor. 
Stochastic globe genetic algorithm search will implement to select the 
best operating conditions of the reactor.

Dynamic Model
Dynamic modeling for optimization and control requires models 

that describe the essential dynamic characteristics of the process under 
study. In the present work, the following assumptions have been 
adopted for the model:

1. Homogenous liquid-phase system.

2. Non-isothermal conditions.

3. Acidity of liquid is changed.

4.  First order irreversible reaction.

5. Constant hold-up.

6. Follow the Monod law.

The component material balances for biomass(X) and substrate(S) 
are:

dX/dt = r1-(F/V)X                                       (1) 

dS/dt = (F/V) Si-(F/V) S- r2                                       (2)

In addition, the reaction rate equations are:

r1=µ(s) X1                                      (3)

And, Y = r1/r2                   (4)

For Monod law;

µ(s) = (µmax *S)/ (Km+S)                                  (5)

6

5

4

3

2

1

0
0          0.5           1          1.5           2          2.5           3          3.5           4

6

5

4

3

2

1

0
0          0.5          1          1.5          2          2.5          3          3.5           4

Time,(hr)
Time,(hr)

biomass
sustrate

biomass
sustrate

(b)(a)

C
on

ce
nt

ra
tio

n,
(g

m
/L

)

C
on

ce
nt

ra
tio

n,
(g

m
/L

)

Figure 1: Unsteady state concentration of biomass and substrate at Si=6 for :(a)D=0.3, (b) D=0.8.

X(gm/l) Si(gm/l) D(hr-1) Y(-) µ(1/hr)
0.001 6.0 0.3 0.4 0.4

Table 1: Optimum initial operating conditions.
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dynamic model appears that the biomass concentration curves have 
S-shape and more sluggish when compared with the substrate curves, 
which have an exponential shape because of the rate of consumed 
substrate is more than the rate of biomass cell generation in the reactor. 
The response speed of the biomass and substrate curves increase with 
Si and decreases with D as shown in figures1-3. The intersection point 
between two curves indicates to the local optimal point of the system, 
where the concentration of the biomass equal to that of the substrate. 
These points are various depended on the operating conditions. 

The concentration of the biomass in the reactor decreases with 
increasing D (Figure 4a) for low and high Si. In the contrast, the 
increasing of Si increases the concentration of biomass in the reactor as 
shown in the figure 4b.This is due to the fact; that Si has a positive effect 
on the specific growth rate constant (µ) regarding to the Monod law 
(equation 5).While the increasing of D tends to increase the dilution of 

the substrate which could moderate the growth rate then reduces the 
concentration of the biomass in the biochemical reactor. The sensitivity 
of the process (steady-state gain) against Si (Figure 4b) is more than 
that with D (Figure 4a). The effect of Si is more pronounced at low D 
as shown in Figure 4. These behaviors were also concluded by Jarzebski 
[14].

The effect of temperature on the biomass growth rate appears in 
figure 5 and 6 at the temperature range from 15 to 30°C. The simulated 
results explain that the increasing of temperature will increase the 
growth rate of the biomass at low and high Si. This tends to increase the 
response speed of the biomass concentration. The steady- state value 
of the biomass concentration was unaffected with the increasing of 
temperature as shown in figure 5 and 6.

Figure 7 and 8 explain the effect of the water acidity (pH) on 
biomass growth. The effect studied for the available data ranged 
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Figure 2: Unsteady state concentration of biomass and substrate at Si=20 for ;(a) D=0.3, (b) D=0.8.
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Figure 3: Unsteady state concentration of biomass and substrate at D=0.3for; (a) Si=40, (b) Si=60. 
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Figure 4: Biomass concentration as a function of (a) Dilution rate, (b) Inlet substrate concentration. 
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Figure 5: Effect of temperature on the process at D=0.3 and Si=6 for (a) T=20, (b) T=30.
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Figure 6: Effect of temperature on the process at D=0.3 and Si=60 for (a) T=20, (b) T=30.
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between pH 2 to pH 4.The biomass growth is very slow at low acidity 
(pH 2) and increased with increasing to pH 4 as shown in figure 7a and 
7b.The concentration of the biomass in the reactor is very low with 
the lower feed substrate concentration (Si=6) and pH 2 of water as 
shown in the figure 7a. At high substrate feed concentration (Si=60), 
the growth of biomass cell would enhanced at low acidity (pH=2) when 
compared figure 8a with figure 7a. The growth rate coefficient (µ) is 
directly affected by Si regarding to the Monod law. The final steady- 
state concentration of biomass is unaffected by the increasing of pH at 
high Si as shown in figure 8.

Reasonable result can observe when compared the simulated results 
with these obtained by Cutlip and Shacham [13] as shown in figure 9. 
The deviation is about 8%. This indicates that the proposed simulated 
model is agreed for the present biochemical reactor. Therefore, the 
reliable model will use to generate the desirable data for formulating 
the optimization equation.

Optimization problem

The available simulated data have been used to correlate the 
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Figure 7: Effect of pH on the process at D=0.3 and Si=6 for; (a) pH=2, (b) pH=4.
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Figure 8: Effect of pH on the process at D=0.3 and Si=60 for; (a) pH=2, (b) pH=4.

objective (concentration of biomass X) with the decision variables 
to facilitate the optimization scheme. The selected effective decision 
variables are; dilution rate (D) and inlet concentration of substrate 
(Si). Nonlinear regression using the Levenberg-Marquardt method 
is implemented with the aid of the computer program (Statistica 
version10). 

The empirical correlation is:

 X=0.409 Si -0.575D-0.028DSi +0.02                                     (9)

Subject to inequality constraints:

6.0≤ Si ≤ 200                                        (10)

0.1≤ D ≤0.8 

Equation 9 indicates that the dilution rate (D) has negative effect 
on the biomass concentration while the inlet concentration of substrate 
(Si) has positive effect. The interaction between Si and D shows that Si 
is more effective than D. 
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Figure 9: Comparison with previous work

Optimization technique

The objective is to maximize the biomass concentration in the 
reactor. The optimization equation (equation 9) is interacted and 

nonlinear, so that the deterministic search is unsuccessful. GA has been 
found suitable for the present biochemical process. GA is stochastic 
global search based on mechanics of natural selection. Figure 9 
illustrates the results/solution of the algorithm scheme. The parameters 
of the GA were adapted, and the selected operators are suitable for 
solving the problem to obtain the best optimal values. Hybrid function 
implemented as the combined search between genetic algorithm and 
pattern search to refine the values of decision variables. 51 generations 
occurred regarding to the nonlinearity of the process. The adapted 
operators of GA are explained in the table 2. 

Table 2 explains the best operators of the genetic algorithms. Figure 
10 illustrates the outputs of the algorithms solutions/operators of 
genetic algorithm.GA is implemented with the pattern search by using 
the hybrid function as shown in table 2 to refine the decision variables 
.The best fitness, best function and score histogram as shown in figure 
10 illustrate that the maximum biomass concentration is 80.57 g/L. The 
histogram of decision variables indicates that the optimal values are; 
Si=197.56 g/L (variable 1) and D=0.1hr-1 (variable 2), which are within 
the limit of inequality constraints (equation 10). The histogram of the 
variables in the figure 10 indicates that Si (variable 1) is the effective 
variable on X. Due to the nonlinearity of the bioreactor process; the 
optimization equation (equation 9) was solved by 51 generations as 
shown in figure 10. 

The optimal sets of the decision variables are illustrated in figures 
11a and 11b corresponding to the objective X. The scattering and 
stochastic of the results are appeared in these figures as a results of 
natural selection by GA. It is found that the optimal values of the 
dilution rate (D) are approximately constant within its lower bound as 
explained in the figure 11a. Inlet substrate concentration (Si) is more 
sensitive to the optimal objective change(X) as shown in figure 11b. 
This is due to that Si is the effective variable on X as shown in the figure 
10. Si is changed within its upper bound (Figure11b).These behaviors 
are because of Si has positive effect while D has negative effect on X as 
shown in the equation 9. Optimal values of the two decision variables 
are stayed within optimal value of X, which equal to 80.57 g/L as shown 
in figure 11.

Optimization technique is a powerful tool to obtain the desired 
operating conditions that improves the performance of the reactor. 
This reduces the risk of experimental runs and cost consumed for 
design and operation. However, the reliability of the search depends 
on; the best selection of decision variables, formulation of the objective 
function and the selection of the proper optimization technique. 
Palonen et al. [15] also indicated this conclusion.

Conclusions
1. Simulated model helps the study of dynamic characteristics of 

the biochemical reactor. Reliable model could use to generate 
extra data in the case of unavailable experimental results.

2.  Effect of dilution rate was observed at low feed substrate 
concentration that is below 20 g/L. The effect of pH and 
temperatures were appeared within the concentration of 60 
g/L. 

3. Feed substrate concentration was found the effective process 
variable on the growth rate of the biomass cell in the reactor.

4. Maximum concentration of the biomass cell could be obtained 
at high concentration of substrate and low dilution rate. 

Population type Double vector
Population size 80

Creation function Feasible population
Scaling function Rank

Selection function Roulette
Crossover function Scattered
Crossover fraction 0.8
Mutation function Adaptive feasible
Migration direction Forward
Migration fraction 0.1
Hybrid function Pattern search

Number of generation 51
Function tolerance 1.0E-6

Table 2: Adapted parameters of GA.
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Optimal feed substrate was more sensitive to the variations of 
the objective biomass concentration.

5. Reasonable agreement was obtained when compared the
simulated results with that obtained by the previous work.

6. Simulation and optimization provide the development of the
process and reducing the risk of experimental runs and cost for
design and operation.

7. Stochastic genetic algorithm was suitable search for the
nonlinear biochemical reactor process.
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